
Call back events related to the main callback function TBApiRegisterEvent() and upddapi.h.

This document covers additional points related to the Callback Events.

EventTypeDigitiserEvent

For UPDD V6 a new callback type has been introduced:

#define _EventTypeDigitiserEvent 0x4000000

This provides a single event for touch information. This is
intended to be a replacement for XY and PhysicalEvents and Flags
events typically used in V5.

Flags events are no longer supported, but XY and PhysicalEvents will be retained. For new
code _EventTypeDigitiserEvent offers a more complete / easier to implement solution.

The struct and related flags are shown below.

Some points to note:

digitizerType indicates if the device that generated this event is a pen or a touch device eg
digitizerType == DIGITIZER_TYPE_PEN

The struct penEvent OR touchEvent is used dependant on digitizerType.

validBits indicates which bits are supported by the sending device (unsupported bits will be
zero so this is only needed if a behavior change is needed based on supported bits)

screen / y provide co-ordinates scaled to the associated monitor

Z values are in the field z. HID also defines “tip pressure” but I’ve not seen a pen that uses
this yet so for now I’m passing z or pressure values in z on the assumption that one or the
other will be used; not both.

#defineTOUCH_BIT_FLAGS_LEFT 0x1

#defineTOUCH_BIT_FLAGS_RIGHT 0x2

Callback Events



#definePEN_BIT_FLAGS_BARREL 0x2

#definePEN_BIT_FLAGS_ERASER 0x4

#definePEN_BIT_FLAGS_IN_RANGE 0x8

#definePEN_BIT_FLAGS_INVERT 0x10

#defineDIGITIZER_TYPE_PEN 0x2

#defineDIGITIZER_TYPE_TOUCH 0x4

Callback Events



uint8_t touchingLeft : 1; // bit flags relating to regular touch
devices, relates to TOUCH_BIT_FLAGS_XXX above

uint8_t touchingRight : 1;

}touchEvent;

}de;

uint8_t deltaBits; // a bit mask to indicate which bits are
changed since last _digitiserEvent

uint8_t validBits; // a bit mask to indicate which bits are
supported by the originating hardware

long screenx; // screen co-ordinate values, these values
are in screen pixels and take account of the co-ordinate range of
the associated monitors

long screeny; // so for example with 2 monitors,
resolution 1024 x 768 side by side; with the left monitor bieng
the primary,

// touching the centre of the right gives about 1536,384

long internalx; // the corresponding windows
co-ordinate value, the primary monitor has the range 0xffff, and
other monitors are scaled from that

long internaly; // so in the example given above the
result is 0x17fee,0x7fff

long calx; // the calibrated co-ordinates values; a
value from 0 - 0xffff, giving the absolute position of touch in the
range of the originating hardware

long caly; // so for example touching the centre of a
screen will give around 7ff regardless of the associated monitor

TBBOOL zSupport; // set to TRUE (1) if the originating
hardware supports z values

unsignedlong z; // the raw z value reported by the
controller, typically this is used to indicate pressure

TBBOOL isTimed; // set to TRUE (1) if the event is

Callback Events



triggered by a timeout (eg liftoff time)

TBBOOL isToolbar; // set to TRUE (1) if the event is for a
touch start started in a toolbar

TBBOOL stylusSupport; // set to TRUE (1) if the originating
hardware supports stylus values

uint8_t digitizerType; // see DIGITIZER_TYPE_xxx

}digitiserEvent;

Touch-Base Support
http://support.touch-base.com/Documentation/50293/Callback-Events

Callback Events

http://support.touch-base.com/Documentation/50293/Callback-Events

