
The UPDD API allows user mode applications to interface directly with the driver and/or the
pointer devices handled by the UPDD pointer device driver. It is assumed that the reader is
familiar with the various functions and parameters of the driver since that information is not
duplicated here.

The UPDD API is supported on all platforms supported by the driver and is used by the
driver's own utility programs, such as the UPDD Console, test program, calibration tool,
gestures, TUIO server etc.

The files needed to build and link the API, i.e. the header in all cases and the .lib file in
Windows are located in the API sub folder of the UPDD install folder. The run time files
(dynamic library in the table below) are held in appropriate locations for the operating
system.

OS Header Import Library Dynamic Library

Windows upddapi.h upddapi.lib upddapi.dll

Mac OS/x upddapi.h n/a libupddapi.n.n.n.dylib

Linux upddapi.h n/a upddapi.so

* UPDD version 6 software is mostly
implemented in 32 bit code that executes in
compatibility mode on 64 bit systems.

Only the parts that must be 64 bit such as
some installer extensions are in 64 bit code.
This approach works for all current Windows
desktop systems. Therefore the shipping API
referenced above is 32 bit code. For any
UPDD 64bit client applications that require 64
bit api files they are available here.

The header file defines and documents all available API functions, macros and constants and
this should be the main point of reference during API development.

Following the standard driver install the API files can be found in the following locations:

OS Header Import Dynamic

Windows c:\program files
(x86)\UPDD\api

c:\program files
(x86)\UPDD\api

c:\program files
(x86)\UPDD

Utilising the API

http://support.touch-base.com/Documentation/50505/Windows-64bit-API-files


Mac OS X /Library/Application
Support/api

n/a /usr/local/lib

Linux /opt/updd/api/ n/a /opt/updd/api/

upddapi.dll / .so / .dylib is tightly linked to a specific version of the driver. You must use
the version installed with the driver.

One simple way to achieve this under Windows is to launch your application with the current
working directory set to the UPDD API folder. This avoids making a copy of the file and thus
avoids the risk of using an incorrect copy. Under Linux / Mac creating a symbolic link to the
installed lib is recommended.

UPDD clients applications are guaranteed to work with the same or newer versions of the
driver but cannot be guaranteed to work with older versions. The version 6 API is not
compatible with the version 5 API.

Using the above files you may wish to write a simple application to see the UPDD API
interface in action.

To aid your development we offer a number of example programs, the simplistic being a
console program example, available here with source code example.

Notes

TBApiOpen will fail if the API version is incompatible with the calling client application.
The TBApiGetLastError can be used to get additional information regarding any API error.

The comms layer used by the API has a compatibility check, basically the client and server
set a "schema" level and comms can only be initiated if these are equal, so if the software
changes so the API is no longer compatible this level is incremented.

As a general rule, the API is tightly bound to a version of the driver and the version number
of the API must match that of the driver.

In practice this is not completely true; there is some leeway and it depends on the nature of
any API changes. The backward compatibility is at the interface level; meaning that a
program built against a certain version of the API should work with newer versions of the
API without recompilation.

Utilising the API

http://support.touch-base.com/Documentation/50255/API-Examples
http://support.touch-base.com/Documentation/50255/API-Examples
http://support.touch-base.com/Documentation/50256/Console-Mode-Program


Using callbacks

Using the API, an application can register callbacks to receive notification of a wide range of
events internal to the driver. To receive notification of these events applications should
register interest via TBApiRegisterDataCallback defining the relevant event settings
(data-type constants).

The nature of the registered callback determines the type of data returned in a PointerEvent
structure (although not all events are accompanied by additional data).

Driver connection considerations

An application that utilises the API should terminate if it receives a callback event of type
_EventConfiguration with CONFIG_EVENT_UNLOAD. This is to allow the uninstaller to delete
files that would otherwise be locked.

Additionally the program might react to the callback events of type _EventConfiguration
with CONFIG_EVENT_CONNECT / CONFIG_EVENT_DISCONNECT. These indicate situations
where the driver becomes available or unavailable. A program might for example avoid
making API calls or otherwise alter its behavior in the case that the driver is not connected.

Data Structures

PointerEvent Structure

This structure (struct _PointerEvent) can be found in the header file tbapi.h. It is used to
hold pointer (and other) data returned from the driver to a registered callback routine.

Qt application considerations

The UPDD API uses QT and there are certain considerations when using a Qt client
application with UPDD API. Given the API also uses Qt and must by definition share a
process space with the client app there are a few limitations.

1. TBApiOpen must be called after QCoreApplication (or a derived object such as
QApplication) is created.

Utilising the API



2. The client program must, if possible, be built against the same major Qt version as the
API. Currently 5.x.x

3. The client must use the Qt binaries from the same Qt version. It is recommended that
the client app use the Qt binaries installed by the driver.

MacOS addendum

Alternatively to 3 above, if using a QT UPDD API client application with Mac OS you can
patch a private copy of the api to link with your qt installation:

1. Take a private copy of libupddapi.1.0.0.dylib and place it in a location where your
application will reference this in preference to the installed copy.

2. Execute the following commands:

install_name_tool -change @rpath/QtWidgets.framework/Versions/5/ QtWidgets <path
to your qt version>/clang_64/lib/QtWidgets.framework/Versions/5/QtWidgets
libupddapi.1.0.0.dylib

install_name_tool -change @rpath/QtCore.framework/Versions/5/ QtCore <path to
your qt version>/clang_64/lib/ QtCore.framework/Versions/5/ QtCore
libupddapi.1.0.0.dylib

install_name_tool -change @rpath/QtSql.framework/Versions/5/ QtSql <path to your
qt version>/clang_64/lib/ QtSql.framework/Versions/5/ QtSql libupddapi.1.0.0.dylib

install_name_tool -change @rpath/QtGui.framework/Versions/5/ QtGui <path to your
qt version>/clang_64/lib/ QtGui.framework/Versions/5/ QtGui libupddapi.1.0.0.dylib

install_name_tool -change @rpath/QtXml.framework/Versions/5/ QtXml <path to
your qt version>/clang_64/lib/ QtXml.framework/Versions/5/ QtXml
libupddapi.1.0.0.dylib

install_name_tool -change @rpath/QtNetwork.framework/Versions/5/
QtNetwork <path to your qt version>/clang_64/lib/
QtNetwork.framework/Versions/5/ QtNetwork libupddapi.1.0.0.dylib

In the commands above libupddapi.1.0.0.dylib is the private copy of the api

e.g.

UpddLibWrapper:: ()

{

Utilising the API



QLibrary lib {"/Users/gary/Desktop/UPDDTest/upddapi.1.0.0"};

copy libupddapi.1.0.0.dylib to the above location

install_name_tool -change @rpath/QtWidgets.framework/Versions/5/QtWidgets
/Users/gary/Qt_unified/5.11.2/clang_64/lib/QtWidgets.framework/Versions/5/QtWidgets
libupddapi.1.0.0.dylib

etc

Examples

Example programs and their source code can be found here.

Touch-Base Support
http://support.touch-base.com/Documentation/50135/Utilising-the-API

Utilising the API

http://support.touch-base.com/Documentation/50255/API-Examples
http://support.touch-base.com/Documentation/50135/Utilising-the-API

